Benzyltrifluoromethyl (or Fluoroalkyl) Selenide: Reagent for Electrophilic Trifluoromethyl (or Fluoroalkyl) Selenolation

Quentin Glenadel,[†] Ermal Ismalaj,[†] and Thierry Billard*

Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246), Université Lyon 1, CNRS, 43 Bd du 11 novembre 1918, F-69622 Villeurbanne, France

Supporting Information

ABSTRACT: Trifluoromethylseleno substituent (CF₃Se) is an emerging group, but its direct introduction onto organic molecules is still quite limited and mainly restricted to nucleophilic methods. Herein, we describe a new approach to easily and safely perform electrophilic trifluoromethylselenolation starting from a simple and easily accessible reagent, namely, benzyltrifluoromethyl selenide. This strategy can be generalized to various fluoroalkylselanyl groups, even functionalized ones.

INTRODUCTION

In recent decades, fluorinated compounds have received extraordinary growing interest mainly due to the very specific properties from fluorine addition inside their structures.^{1,2} Such specificities could find a large panel of various applications, from materials to life sciences.³⁻¹¹ More recently, it has been well-demonstrated that new properties such as high electronwithdrawing characteristics and high lipophilicity can be expected from the association of fluorinated moieties with a heteroatom. This paved the way for the development of new molecules, in particular, as agrochemicals and pharmaceuticals. This associative concept has been particularly illustrated with the growing interest in the trifluoromethylsulfanyl group (CF₃S).^{12,13} In the same chalcogen family, the selenium atom possesses properties similar to those of sulfur. Selenium belongs to the essential oligo-elements for living species,^{14,15} and some endogenous compounds are selenylated as, for instance, selenocysteine and selenoproteins.^{16–21} Furthermore, selenium has demonstrated beneficial roles in human health.²²⁻²⁶ Organoselenium compounds can also be used for interesting applications in material sciences and nanotechnology.²⁷ This has focused some interests to the synthesis of trifluoromethylselenolated molecules. Indeed, from an electronic point of view, the CF₃Se group presents properties similar to those of CF_3S (Hammett constants $\sigma_p = 0.45$, $\sigma_m = 0.44$; Swain–Lupton constants F = 0.43, R = 0.02²⁸ but with a lower resonance effect, which could offer some modulations in molecular properties.

Because such molecules are relatively unknown, only a few methods have been described in the literature to obtain CF_3Se molecules. These strategies can be divided into two parts (Scheme 1). The indirect way, consisting in the trifluoromethylation of selenylated substrates. The most useful procedure is based on the nucleophilic trifluoromethylation of diseledines²⁹ or, more interestingly, selenocyanates.³⁰ The main variations of this technique were the nucleophilic trifluoromethylating reagents.^{31–34} Even if this strategy was recently

Scheme 1. Previous Syntheses of Trifluoromethyl Selenides

 CF_3 : CF_3SiMe_3 , F_3C NR_2 , CF_3Cu (from HCF₃), $CF_3P(O)(OEt)_2$ CF_3 : CF_3SO_2SePh , CF_3I , CF_3SO_2Na CF_3Se^- : CF_3SeCu , CF_3SeNMe_4

improved in aromatic series with a one-pot process,³⁵ the required preformation of selenylated substrates can constitute a major drawback. It should be noticed that some radical trifluoromethylations of diselenides or selenols have also been reported but are generally more limited.^{36–41} From a retrosynthetic point of view, the direct way provides the most elegant approach because the introduction of the CF₃Se group can be envisaged without preliminary introduction of a selenium atom. Thus, recently, trifluoromethylselenolate anion (CF₃Se⁻) chemistry has been revisited and has furnished good results in some nucleophilic substitutions or coupling reactions with alkyl,⁴² vinyl,^{43–45} and aryl^{46–50} halogenides, boronic acids,⁵¹ terminal alkynes,^{51,52} or aromatic diazonium salts.⁵³ The reagents used in these reactions are mainly CF₃SeCu^{42–46,48,52} or CF₃SeIMe₄,^{49,51,53} which have been generally prepared from CF₃SiMe₃ and selenium metal. It is noteworthy that a one-pot process has been developed by an in

Received: June 3, 2016 Published: August 29, 2016

The Journal of Organic Chemistry

situ preforming CF_3Se^- species.⁴⁷ However, these methods require the use of a stoichiometric amount of selenium metal and sometimes a stoichiometric amount of copper when CF_3SeCu is used. Furthermore, in aromatic series, prefunctionalized substrates (halogenides, boronic acids, diazoniums, etc.) are necessary.

One of the best ways to functionalize aromatic compounds is electrophilic aromatic substitution, which is formally a hydrogen substitution. To extend such a strategy to trifluoromethylselenolation, an electrophilic reagent is then required. Some years ago, CF₃SeCl was described with such purpose. Nevertheless, its synthesis was performed in harsh conditions, with toxic reagents and with poor yields.^{54,55} Furthermore, by analogy with CF₃SCl,⁵⁶ we can suppose that this highly volatile reagent must be toxic, explaining its very few applications.^{57–61} In 2002, Magnier et al.⁶² published a very elegant and mild procedure to prepare CF₃SeCl, which was more efficient than the previous methods. This approach is based on the oxidative chlorination of benzyltrifluoromethyl selenide.

RESULTS AND DISCUSSION

This last compound is very easy to synthesize starting from CF_3SiMe_3 and benzylselenocyanate,³⁰ which is obtained from potassium selenocyanate, an inexpensive source of selenium. Consequently, we decided to develop a procedure based on this starting material, avoiding the isolation of CF_3SeCl , to perform electrophilic aromatic substitutions.

In Magnier's procedure, CF_3SeCl is formed by reaction of SO_2Cl_2 with benzyltrifluoromethyl selenide (1a) in solvent-free conditions. To extrapolate this strategy to a one-pot procedure, without isolation of CF_3SeCl (2a), optimization of this reaction with a solvent was first studied (Table 1). If the formation of 2a

Table I. Form	ation c	of CI	F2SeCI
---------------	---------	-------	--------

F₃CSe	$P_h + SO_2$	Cl ₂ solven rt uiv.)	it → F ₃ CSe 2a	e-Cl (+ C	F ₃ SeCl ₃
		1 .		$(\alpha)^{a}$	$2 \left(\alpha \right)^{a}$
entry	$SO_2CI_2(x)$	solvent	time	2a (%)	2a' (%)
1	1	THF	4 min	95	
2	1	THF	15 min	95	
3	2	THF	4 min	82	10
4	2	THF	15 min	58	40
5	2	THF	1.5 h	46	52
6	2	THF	3 h	59	41
7	1	CH_2Cl_2	15 min	19	
8	1	CH_2Cl_2	1.5 h	62	
9	1	CH_2Cl_2	3 h	67	
10	1	CH_2Cl_2	4 h	67	
11	2	CH_2Cl_2	15 min	34	
12	2	CH_2Cl_2	1.5 h	83	
13	2	CH_2Cl_2	3 h	88	
av: 11-		19E NINTD			

"Yields as determined by " $^{\rm P}{\rm F}$ NMR spectroscopy using ${\rm PhOCF}_3$ as an internal standard.

is nearly instantaneous in THF (entries 1 and 2), the kinetics of the reaction in CH_2Cl_2 is rather low (entries 7–10). This kinetic difference can be rationalized by the promoted SO_2Cl_2 dissociation with basic solvents⁶³ ($DN_{THF} = 20$, $DN_{CH_2Cl_2} = 1$).^{64,65} The use of 2 equiv of SO_2Cl_2 can accelerate the formation of CF_3SeCl (2a) in CH_2Cl_2 (entries 11–13). In THF, the formation of CF_3SeCl_3 (2a'),⁶⁶ arising from

chlorination of 2a, is observed with an excess of SO_2Cl_2 (entries 3–6). This side reaction seems to be an equilibrium because, after 1 h, a steady-state appears to be achieved (entries 4–6). Finally, the best solvent to form CF₃SeCl efficiently and rapidly is THF, with only 1 equiv of sulfuryl chloride.

Trifluoromethylselenolation of aromatic compounds with the preformed CF_3SeCl (2a) was then investigated. To our delight, by simply adding aromatic substrates 3, the SE_{Ar} reaction was observed (Scheme 2). With electron-rich substrates, the

^{*a*}Yields shown are of isolated products; values in parentheses are yields as determined by ¹⁹F NMR spectroscopy using PhOCF₃ as an internal standard. ^{*b*}Ia (2.2 equiv), SO₂Cl₂ (2.2 equiv). ^{*c*}Ia (1.2 equiv), SO₂Cl₂ (1.2 equiv), BF₃·Et₂O (0.3 equiv), ClCH₂CH₂Cl, 80 °C.

reaction gave good to excellent yields, even in heteroaromatic series. By doubling the amount of reagents, bis-trifluoromethylselenolation could also be observed (4c). With less electron-rich aromatic compounds, the reaction failed in these conditions. To try to activate CF₃SeCl, to obtain a better electrophile, some Lewis acid was screened as catalyst. With BF₃·Et₂O in 1,2-dichloroethane at 80 °C, good yields with anisole (4l) and mesitylene (4m) were obtained. Nevertheless, only low yield was observed with toluene (4k). A stronger Lewis acid, such as AlCl₃ or TiCl₄, failed to favor this reaction.

Because it could be interesting to modulate properties of targeted molecules, depending on the field of applications, modulation of the fluorinated part could be of interest. Consequently, this efficient method has been extended to other fluoroalkylselenolations. Thus, bromodifluoromethanese-lenylated molecules were obtained starting from benzylbromo-difluoromethyl selenide **1b**, obtained from bromodifluoromethylsilane (Scheme 3). Similar to **1a**, good to excellent results were achieved. The only difference between both procedures is the preforming time of reactive species $BrCF_2SeCl(2b)$, which

Scheme 3. Bromodifluoromethylselenolation of Aromatic Compounds^a

^{*a*}Yields shown are of isolated products; values in parentheses are yields as determined by ¹⁹F NMR spectroscopy using PhOCF₃ as an internal standard. ^{*b*}**1b** (2.2 equiv), SO₂Cl₂ (2.2 equiv). ^{*c*}**1b** (1.2 equiv), SO₂Cl₂ (1.2 equiv), BF₃·Et₂O (0.3 equiv), ClCH₂CH₂Cl, 80 °C.

requires slightly more time. With highly reactive pyrrole 3g, only bis-substituted product 5g was obtained. Less electron-rich aromatic compounds also required BF_3 ·Et₂O catalysis with heating. Nevertheless, lower yields were observed possibly due to a partial decomposition of the SeCF₂Br by interaction with the Lewis acid.

To validate the generality of this strategy, various other benzylfluoroalkyl selenides were synthesized and engaged in fluoroalkylselenolation reactions (Figure 1). This strategy appears very versatile and furnishes good to excellent yields of fluoroalkaneselenylated aromatic compounds. The only adaptation of the procedure was the preforming time of reacting species 2, depending on the reagent 1. This preformation of 2 is summarized in Table 2.

Therefore, difluoromethylated (10) and higher fluorinated homologues (6 and 7) have been obtained. Some functionalized groups were also introduced (8 and 9). To the best of our knowledge, these last substituents have never been described to this day.

Inspired by the "chemical chameleon" characteristic of the PhSO₂ group,⁶⁷ we have recently demonstrated the easy access to deuterated molecules,⁶⁸ which have received some recent interest in medicinal chemistry.^{69–71} Consequently, an example of synthesis of a molecule bearing the substituent DCF₂Se was performed (Scheme 4). Thus, difluorodeuteriomethylselanyl indole [**D**]10h was obtained with satisfactory yield from 9h. Except during a mechanistic study,⁷² this DCF₂Se group was never described, and molecules bearing it were never isolated. Such a strategy opens access to a new substituent for screening in drug design.

Figure 1. Fluoroalkylselenolation of aromatic compounds. Yields shown are of isolated products; values in parentheses are yields as determined by $^{19}\rm{F}$ NMR spectroscopy using PhOCF3 as an internal standard.

Table 2. Preformation of Reagents 2

R _F Se∕	$^{\text{Ph}}$ + SO ₂ Cl ₂ $\xrightarrow{\text{THF}}$ 23°C, t 1	→ R _F Se−Cl 2
entry	R _F SeBn	time (min)
1	$R_F = CF_3$	15
2	$R_{\rm F} = CF_2CF_3$	15
3	$R_{\rm F} = CF_2CF_2CF_3$	15
4	$R_F = CF_2Br$	30
5	$R_F = CF_2COOMe$	30
6	$R_F = CF_2SO_2Ph$	30
7^a	$R_F = CF_2H$	45
^a Reaction perfor	rmed at 0 °C.	

Scheme 4. Synthesis of Difluorodeuteriomethylselanyl Indole ([D]10h)

CONCLUSION

To conclude, electrophilic trifluoro- and fluoroalkylselenolations of aromatic and heteroaromatic compounds can be easily performed starting from corresponding benzylfluoroalkyl selenides. These simple reagents, easily obtained from a common and moderately toxic source of selenium, constitute valuable electrophilic sources of fluoroalkylseleno groups and should favor the development of new substrates bearing such substituents. Furthermore, the possibility to also introduce functionalized moieties opens the way to post-transformations. By this method, molecules with a DCF₂Se group could be obtained for the first time. No doubt that these reagents should find their place in the toolbox of emerging fluorinated groups.

EXPERIMENTAL SECTION

General Information. Commercial reagents were used as supplied. Anhydrous solvents were used as supplied. NMR spectra were recorded at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), 376 MHz (¹⁹F NMR), or at 300 MHz (¹H NMR) and 282 MHz (¹⁹F NMR). Multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (quintet), sext (sextet), m (multiplet). The term massif is used to define a group of different protons. All coupling constants were reported in hertz. Melting points were determined using a Köfler bench apparatus (calibration substances were specified).

(*Benzylselanyl)carbonitrile.* To a dry round-bottom flask equipped with a magnetic stirrer were added potassium selenocyanate (12.6 g, 87.7 mmol, 1.1 equiv), dry THF (60 mL), and benzylbromide (13.6 g, 79.7 mmol, 1.0 equiv). The reaction mixture was stirred at 60 °C for 17 h. The reaction mixture was then partitioned between water and Et₂O, and the organic layer was dried over MgSO₄, filtered, and concentrated to dryness to afford the desired product: ¹H NMR (300 MHz, CDCl₃) δ = 7.39–7.33 (massif, SH), 4.31 (s, 2H), in accordance with literature.⁷³

{[(Trifluoromethyl)selanyl]methyl}benzene (1a). To a dry roundbottom flask equipped with a magnetic stirrer were added (benzylselanyl)carbonitrile (13.7 g, 70.0 mmol, 1.0 equiv) and dry THF (140 mL). The flask was evacuated and refilled with nitrogen three times, and TMSCF₃ (20.7 mL, 140 mmol, 2.0 equiv) was added. The reaction mixture was cooled to 0 °C, and TBAF in 1 M THF (14.0 mL, 14.0 mmol, 0.2 equiv) was added dropwise. After 10 min at 0 °C under nitrogen, the reaction was allowed to warm to 23 °C and stirred for 7 h. The conversion was checked by ¹⁹F NMR with PhOCF₃ as internal standard. The reaction mixture was then partitioned between water and pentane, and the aqueous layer was extracted with pentane. The combined organic layers were washed with brine, dried over MgSO4, filtered through a pad of silica (rinsed with pentane), and concentrated to dryness (under moderate vacuum). The crude residue was purified by chromatography (pentane: 100) to afford the desired product 1a as a colorless liquid (11.7 g, 70% yield): ¹H NMR (300 MHz, CDCl₃) $\delta = 7.37 - 7.27$ (massif, 5H), 4.26 (s, 2H); ¹⁹F NMR (282 MHz, $CDCl_3$) $\delta = -34.47$ (s, 3F), in accordance with literature.

{[(Bromodifluoromethyl)selanyl]methyl}benzene (1b). To a dry round-bottom flask equipped with a magnetic stirrer was added (benzylselanyl)carbonitrile (3.92 g, 20 mmol, 1.0 equiv). The flask was evacuated and refilled with nitrogen three times before adding THF (40 mL, 0.5 M) and TMSCF₂Br (6.2 mL, 40 mmol, 2.0 equiv) to the flask. The reaction mixture was cooled to 0 °C, and TBAF in 1 M THF (4.0 mL, 4.0 mmol, 0.2 equiv) was added dropwise. After 10 min at 0 °C under nitrogen, the reaction was allowed to warm to 23 °C and stirred for 4 h. The reaction mixture was then partitioned between water and pentane, and the aqueous layer was extracted with pentane. The combined organic layers were washed with water and brine, dried over MgSO₄, filtered, and concentrated to dryness (under moderate vacuum). The crude residue was purified by chromatography (pentane: 100) to afford the desired product 1b as a colorless liquid (5.28 g, 88% yield): ¹H NMR (400 MHz, CDCl₃) δ = 7.36–7.28 (massif, 5H), 4.31 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 135.6, 129.3, 129.0, 127.8, 107.9 (t, ${}^{1}J(C,F) = 355 \text{ Hz}$), 32.7; ${}^{19}F$ NMR (376) MHz, CDCl₃) $\delta = -16.54$ (s, 2F). Anal. Calcd (%) for C₈H₇BrF₂Se: C, 32.03; H, 2.35; Br, 26.63; Se, 26.32. Found: C, 31.95; H, 2.47; Se, 26.11.

{[(Pentafluoroethyl)selanyl]methyl}benzene (1c). To a dry roundbottom flask equipped with a magnetic stirrer were added (benzylselanyl)carbonitrile (2.8 g, 14.2 mmol, 1.0 equiv) and dry THF (30 mL). The flask was evacuated and refilled with nitrogen three times, and $\text{TMSCF}_2\text{CF}_3$ (4.9 mL, 28.5 mmol, 2.0 equiv) was added. The reaction mixture was cooled to 0 °C and TBAF in 1 M THF (2.8 mL, 2.8 mmol, 0.2 equiv) was added dropwise. After 10 min at 0 °C under nitrogen, the reaction was allowed to warm to 23 °C and stirred for 16 h. The conversion was checked by ¹⁹F NMR with PhOCF₃ as internal standard. The reaction mixture was then partitioned between water and pentane, and the aqueous layer was extracted with pentane. The combined organic layers were washed with brine, dried over MgSO₄, filtered through a pad of silica (rinsed with pentane), and concentrated to dryness (under moderate vacuum). The crude residue was purified by chromatography (pentane: 100) to afford the desired product 1c as a colorless liquid (3.21 g, 78% yield): ¹H NMR (400 MHz, CDCl₃) δ = 7.39–7.28 (massif, 5H), 4.28 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 135.5, 129.3, 129.1, 128.0, 119.1 (qt, ¹J(C,F) = 285 Hz, ²J(C,F) = 35 Hz), 116.5 (tq, ¹J(C,F) = 303 Hz, ²J(C,F) = 43 Hz), 28.6 (t, ³J(C,F) = 3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -83.66 (t, ³J(F,F) = 4.3 Hz, 3F), -91.75 (q, ³J(F,F) = 4.3 Hz, 2F). Anal. Calcd (%) for C₉H₇F₅Se: C, 37.39; H, 2.44; Se, 27.31. Found: C, 37.54; H, 2.53; Se, 27.10.

{[(Heptafluoropropyl)selanyl]methyl}benzene (1d). To a dry round-bottom flask equipped with a magnetic stirrer were added (benzylselanyl)carbonitrile (720 mg, 3.7 mmol, 1.0 equiv) and dry THF (7 mL). The flask was evacuated and refilled with nitrogen three times, and TMSCF₂CF₂CF₂(1.5 mL, 7.3 mmol, 2.0 equiv) was added. The reaction mixture was cooled to 0 °C and TBAF in 1 M THF (0.73 mL, 0.73 mmol, 0.2 equiv) was added dropwise. After 10 min at 0 °C under nitrogen, the reaction was allowed to warm to 23 °C and stirred for 16 h. The conversion was checked by ¹⁹F NMR with PhOCF₃ as internal standard. The reaction mixture was then partitioned between water and pentane, and the aqueous layer was extracted with pentane. The combined organic layers were washed with brine, dried over MgSO₄, filtered through a pad of silica (rinsed with pentane), and concentrated to dryness (under moderate vacuum). The crude residue was purified by chromatography (pentane: 100) to afford the desired product 1d as a colorless liquid (1.09 g, 87% yield): ¹H NMR (400 MHz, CDCl₃) δ = 7.38–7.27 (massif, 5H), 4.30 (s, 2H); ¹³C NMR $(101 \text{ MHz, CDCl}_{2}) \delta = 135.5, 129.4, 129.1, 128.1, 119.4 (tt, {}^{1}I(C,F) =$ 304 Hz, ${}^{2}J(C,F) = 38$ Hz), 117.8 (qt, ${}^{1}J(C,F) = 288$ Hz, ${}^{2}J(C,F) = 35$ Hz), 108.9 (tsext, ${}^{1}J(C,F) = 262$ Hz, ${}^{2}J(C,F) = 36$ Hz), 28.6 (m); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ = -79.78 (t, ⁴J(F,F) = 9.3 Hz, 3F), -87.74 (m, 2F), -122.77 (br s, 2F). Anal. Calcd (%) for C₁₀H₇F₇Se: C, 35.42; H, 2.08; Se, 23.28. Found: C, 35.18; H, 2.23; Se, 23.13.

Methyl 2-(Benzylselanyl)-2,2-difluoroacetate (1e). To a dry round-bottom flask equipped with a magnetic stirrer was added (benzylselanyl)carbonitrile (392 mg, 2.0 mmol, 1.0 equiv). The flask was evacuated and refilled with nitrogen three times before adding THF (4 mL, 0.5 M) and TMSCF₂COOMe (0.71 mL, 4 mmol, 2.0 equiv) to the flask. The reaction mixture was cooled to 0 °C, and TBAF in 1 M THF (0.4 mL, 0.4 mmol, 0.2 equiv) was added dropwise. After 10 min at 0 °C under nitrogen, the reaction was allowed to warm to 23 °C and stirred for 15 h. The reaction mixture was then partitioned between water and EtOAc, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over MgSO₄, filtered, and concentrated to dryness. The crude residue was purified by chromatography (pentane/ Et_2O 99/1 to 98/2) to afford the desired product 1e as a pale yellow liquid (350 mg, 62% yield): ¹H NMR (400 MHz, CDCl₃) δ = 7.36– 7.24 (massif, 5H), 4.24 (s, 2H), 3.88 (s, 3H); $^{13}\mathrm{C}$ NMR (101 MHz, $CDCl_3$) $\delta = 163.0$ (t, ²J(C,F) = 31 Hz), 136.4, 129.3, 128.9, 127.7, 115.1 (t, ${}^{1}J(C,F) = 302$ Hz), 54.0, 28.8 (t, ${}^{3}J(C,F) = 3$ Hz); ${}^{19}F$ NMR (376 MHz, CDCl₃) δ = -83.07 (s, 2F). Anal. Calcd (%) for C10H10F2O2Se: C, 43.03; H, 3.61; Se, 28.29. Found: C, 43.32; H, 3.92; Se. 28.10.

([[Benzenesulfonyl)difluoromethyl]selanyl]methyl)benzene (1f). To a dry round-bottom flask equipped with a magnetic stirrer was added (benzylselanyl)carbonitrile (1.08 g, 5.5 mmol, 1.0 equiv). The flask was evacuated and refilled with nitrogen three times before adding diglyme (11 mL, 0.5 M) and TMSCF₂SO₂Ph (11.0 mmol, 2.0 equiv) to the flask. The reaction mixture was cooled to 0 °C, and CsF (166 mg, 1.1 mmol, 0.2 equiv) was carefully added. After 10 min at 0 °C under nitrogen, the reaction was allowed to warm to 23 °C and stirred for 15 h. The reaction mixture was then partitioned between water and Et₂O, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with water and brine, dried over

MgSO₄, filtered, and concentrated to dryness. The crude residue was purified by chromatography (pentane/Et₂O 9/1) to afford the desired product **1f** as a white solid (2.64 g, 80% yield): mp 63–65 °C, calibration substance: azobenzol at 68.0 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.02 (m, 2H), 7.77 (m, 1H), 7.64 (m, 2H), 7.40–7.27 (massif, 5H), 4.45 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 135.59, 135.57, 131.9, 131.0, 129.5, 129.4, 129.0, 128.0, 126.0 (t, ¹*J*(C,F) = 339 Hz), 30.7 (t, ³*J*(C,F) = 3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = –78.53 (s, 2F). Anal. Calcd (%) for C₁₄H₁₂F₂O₂SSe: C, 46.55; H, 3.35; Se, 21.86, S 8.87. Found: C, 46.65; H, 3.58; Se, 21.64, S 9.07.

{[(Difluoromethyl)selanyl]methyl}benzene (1g). To a dry roundbottom flask equipped with a magnetic stirrer were added (benzylselanyl)carbonitrile (2.05 g, 10.45 mmol, 1.0 equiv) and dry THF (20 mL). The flask was evacuated and refilled with nitrogen three times, and TMSCF₂H (2.85 mL, 20.9 mmol, 2.0 equiv) was added. The reaction mixture was cooled to 0 °C, and CsF (1.59 g, 10.45 mmol, 1.0 equiv) was carefully added. After 30 min at 0 °C under nitrogen, the reaction was allowed to warm to 23 °C and stirred for 15 h. The conversion was checked by ¹⁹F NMR with PhOCF₃ as internal standard. The reaction mixture was then partitioned between water and pentane, and the aqueous layer was extracted with pentane. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated to dryness (under moderate vacuum). The crude residue was purified by chromatography (pentane/DCM 97/3 to 95/5) to afford the desired product 1g as a colorless liquid (450 mg, 19% yield): ¹H NMR (400 MHz, CDCl₃) δ = 7.37-7.31 (massif, 4H), 7.27 (m, 1H), 7.08 (t, ${}^{2}J$ (H,F) = 55.2 Hz, 1H), 4.12 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 137.4, 129.1, 128.9, 127.5, 115.8 (t, ${}^{1}J(C,F) = 287 \text{ Hz}$), 26.4 (t, ${}^{3}J(C,F) = 3 \text{ Hz}$); ${}^{19}F$ NMR (376 MHz, CDCl₃) $\delta = -92.95$ (d, ²J(F,H) = 55.3 Hz, 2F). Anal. Calcd (%) for C₈H₈F₂Se: C, 43.46; H, 3.65; Se, 35.71. Found: C, 43.29; H, 3.40; Se, 35.63.

General Procedure 1 for Fluoroalkylselenolation without BF_3 ·Et₂O. To a flask equipped with a magnetic stirrer were added 1 (0.5 mmol, 1.0 equiv), sulfuryl chloride (0.5 mmol, 1.0 equiv), and dry THF (0.5 mL, 1 M). The reaction mixture was stirred at 23 °C until complete formation of the intermediate 2 (cf Table 2); it was then cooled to 0 °C, followed by the addition of 3 (0.5 mmol, 1.0 equiv). The reaction mixture was stirred at 0 °C for 15 min, and it was then allowed to warm to 23 °C until complete conversion of the intermediate 2 (the conversion takes between 15 min and 3 h, as checked by ¹⁹F NMR with PhOCF₃ as internal standard). The reaction mixture was then partitioned between water and Et₂O, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated to dryness. The crude residue was purified by chromatography to afford the desired product 4, 5, 6, 7, 8, or 9.

General Procedure 2 for Fluoroalkylselenolation with BF₃· Et₂O. To a flask equipped with a magnetic stirrer were added 1 (0.6 mmol, 1.2 equiv), sulfuryl chloride (0.6 mmol, 1.2 equiv), and dry DCE (0.5 mL, 1 M). The reaction mixture was stirred at 23 °C for 3.5 h followed by the addition of 3 (0.5 mmol, 1.0 equiv) and BF₃·Et₂O (0.15 mmol, 30 mol). The reaction mixture was heated to 80 °C for 15 h. The conversion was checked by ¹⁹F NMR with PhOCF₃ as internal standard. The reaction mixture was extracted with pentane. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated to dryness. The crude residue was purified by chromatography to afford the desired product 4 or 5.

General Procedure 3 for Difluoromethylselenolation. To a flask equipped with a magnetic stirrer were added 1g (0.4 mmol, 1.0 equiv) and dry THF (0.2 mL). The solution was cooled to 0 °C, and sulfuryl chloride (0.4 mmol, 1.0 equiv) and dry THF (0.2 mL) were added. The reaction mixture was stirred at 0 °C for 45 min, and 3 (0.4 mmol, 1.0 equiv) was added. The reaction mixture was stirred at 0 °C until complete conversion of the intermediate 2g (the conversion takes around 2 h; it was checked by ¹⁹F NMR with PhOCF₃ as internal standard). The reaction mixture was extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄,

filtered, and concentrated to dryness. The crude residue was purified by chromatography to afford the desired product **10**.

2,4-Dimethoxy-1-[(trifluoromethyl)selanyl]benzene (4a). Procedure 1. Eluent for the flash chromatography: pentane/toluene 90/10 to 85/15; ¹H NMR (300 MHz, CDCl₃) δ = 7.61 (d, *J* = 8.1 Hz, 1H), 6.52–6.48 (massif, 2H), 3.87 (s, 3H), 3.84 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ = -36.54 (s, 3F), in accordance with literature.³⁵

4-[(trifluoromethyl)selanyl]benzene-1,3-diol (4b). Procedure 1. White solid (mp 68–70 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: pentane/acetone 80/20; ¹H NMR (400 MHz, CDCl₃) δ = 7.52 (d, *J* = 8.5 Hz, 1H), 6.58 (d, *J* = 2.7 Hz, 1H), 6.45 (dd, *J* = 8.5, 2.7 Hz, 1H), 6.25 (br s, 1H), 5.44 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 160.6, 158.8, 140.3, 121.9 (q, ¹*J*(C,F) = 336 Hz), 109.8, 102.7, 100.3; ¹⁹F NMR (376 MHz, CDCl₃) δ = -36.74 (s, 3F). Anal. Calcd (%) for C₇H₅F₃O₂Se: C, 32.71; H, 1.96; Se, 30.72. Found: C, 32.59; H, 1.91; Se, 30.48.

4,6-Bis[(trifluoromethyl)selanyl]benzene-1,3-diol (4c). To a flask equipped with a magnetic stirrer were added 1a (274 mg, 1.15 mmol, 2.2 equiv), sulfuryl chloride (93 µL, 1.15 mmol, 2.2 equiv), and dry THF (1.1 mL, 1 M). The reaction mixture was stirred at 23 °C for 15 min, and it was cooled to 0 °C. Resorcinol 3c (57 mg, 0.52 mmol, 1.0 equiv) was added, and the reaction was stirred at 0 °C for 15 min and then at 23 $^{\circ}\text{C}$ for 22 h (the conversion was checked by ^{19}F NMR with PhOCF₂ as internal standard). The reaction mixture was then partitioned between an aqueous 10% NaOH solution and EtOAc. The aqueous layer was acidified with an aqueous 1 M HCl solution and twice extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated to dryness. The crude residue was purified by chromatography (pentane/acetone 80/20) to afford the desired product 4c as a white solid (195 mg, 93% yield): mp 64-66 °C, calibration substance: azobenzol at 68.0 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.01 (s, 1H), 6.84 (s, 1H), 6.47 (br s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 162.1, 149.3, 121.7 (q, ¹J(C,F) = 336 Hz), 102.6, 101.9 (br s); ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -36.47$ (s, 6F). Anal. Calcd (%) for C₈H₄F₆O₂Se₂: C, 23.78; H, 1.00; Se, 39.09. Found: C, 23.67; H, 0.89; Se, 39.14.

2-[(Trifluoromethyl)selanyl]naphthalen-1-ol (4d). Procedure 1. Brown solid (mp 64–66 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: pentane/EtOAc 95/5 to 85/15; ¹H NMR (400 MHz, CDCl₃) δ = 8.46 (br d, *J* = 8.4 Hz, 1H), 8.26 (ddd, *J* = 8.3, 1.4, 0.7 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.66 (ddd, *J* = 8.4, 6.8, 1.4 Hz, 1H), 7.57 (ddd, *J* = 8.3, 6.8, 1.2 Hz, 1H), 6.80 (d, *J* = 7.8 Hz, 1H), 5.84 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 154.8, 139.4, 136.8, 128.3, 128.3, 126.1, 125.3, 122.7 (q, ¹*J*(C,F) = 335 Hz), 122.4, 113.2 (q, ³*J*(C,F) = 2 Hz), 108.9; ¹⁹F NMR (376 MHz, CDCl₃) δ = -36.38 (s, 3F). Anal. Calcd (%) for C₁₁H₇F₃OSe: C, 45.38; H, 2.42; Se, 27.12. Found: C, 45.59; H, 2.65; Se, 27.31.

N,N-Dimethyl-4-[(trifluoromethyl)selanyl]aniline (**4e**). *Procedure* **1**. Eluent for the flash chromatography: pentane/EtOAc 99/1 to 98/2; ¹H NMR (300 MHz, CDCl₃) δ = 7.57 (m, 2H), 6.68 (m, 2H), 3.01 (s, 6H); ¹⁹F NMR (282 MHz, CDCl₃) δ = -37.84 (s, 3F), in accordance with literature.³⁵

3-Ethyl-2,5-dimethyl-4-[(trifluoromethyl)selanyl]-1H-pyrrole (4f). Procedure 1. Dark brown liquid. Eluent for the flash chromatography: pentane/Et₂O 100/0 to 98/2; ¹H NMR (400 MHz, CDCl₃) δ = 7.85 (br s, 1H), 2.44 (q, *J* = 7.6 Hz, 2H), 2.24 (s, 3H), 2.16 (s, 3H), 1.10 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 129.6, 129.4, 123.0, 122.3 (q, ¹*J*(C,F) = 338 Hz), 100.5 (q, ³*J*(C,F) = 2 Hz), 18.2, 15.4, 11.4, 10.8; ¹⁹F NMR (376 MHz, CDCl₃) δ = -38.58 (s, 3F). Anal. Calcd (%) for C₉H₁₂F₃NSe: C, 40.01; H, 4.48, N 5.18; Se, 29.23. Found: C, 39.76; H, 4.71, N 5.46; Se, 29.52.

3-[(Trifluoromethyl)selanyl]-1H-indole (**4**h). Procedure 1. Brown solid (mp 63–65 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: pentane/EtOAc 90/10 to 85/15; ¹H NMR (400 MHz, CDCl₃) δ = 8.44 (br s, 1H), 7.82 (m, 1H), 7.48 (d, *J* = 2.7 Hz, 1H), 7.43 (m, 1H), 7.36–7.30 (massif, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 136.1, 133.0, 130.1, 123.4, 122.4 (q, ¹*J*(C,F) = 335 Hz), 121.6, 120.1, 111.7, 93.2 (q, ³*J*(C,F) = 2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -37.54 (s, 3F). Anal. Calcd (%) for C₉H₆F₃NSe: C,

The Journal of Organic Chemistry

40.93; H, 2.29, N 5.30; Se, 29.90. Found: C, 41.02; H, 2.48, N 5.13; Se, 29.74.

4-Bromo-3-[(trifluoromethyl)selanyl]-1H-indole (4i). Procedure 1. Brown solid (mp 98–100 °C, calibration substance: benzil at 95.0 °C). Eluent for the flash chromatography: pentane/EtOAc 85/15 to 80/20; ¹H NMR (400 MHz, CDCl₃) δ = 8.65 (br s, 1H), 7.56 (d, *J* = 2.8 Hz, 1H), 7.43–7.38 (massif, 2H), 7.10 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 137.1, 135.5, 126.6, 126.2, 124.2, 122.0 (q, ¹*J*(C,F) = 335 Hz), 115.0, 111.3, 93.3 (q, ³*J*(C,F) = 2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -38.70 (s, 3F). Anal. Calcd (%) for C₉H₅BrF₃NSe: C, 31.51; H, 1.47, Br 23.30, N 4.08; Se, 23.02. Found: C, 31.70; H, 1.70, Br 23.22, N 4.21; Se, 22.96.

Methyl 3-[(*Trifluoromethyl*)*selanyl*]-1*H-indole-5-carboxylate* (4j). *Procedure* 1. Pale pink solid (mp 169–171 °C, calibration substance: benzanilide at 163.0 °C). Eluent for the flash chromatography: pentane/EtOAc 80/20 to 70/30; ¹H NMR (400 MHz, $(CD_3)_2CO) \delta$ = 11.34 (br s, 1H), 8.42 (s, 1H), 7.95–7.92 (massif, 2H), 7.64 (d, *J* = 8.9 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (101 MHz, $(CD_3)_2CO) \delta$ = 167.8, 140.3, 137.1, 130.6, 124.7, 124.2, 123.4 (q, ¹*J*(C,F) = 334 Hz), 122.6, 113.1, 93.5, 52.2; ¹⁹F NMR (376 MHz, $(CD_3)_2CO) \delta$ = -38.93 (s, 3F). Anal. Calcd (%) for C₁₁H₈F₃NO₂Se: C, 41.01; H, 2.50, N 4.35; Se, 24.51. Found: C, 40.88; H, 2.66, N 4.16; Se, 24.81.

1-Methoxy-4-[(trifluoromethyl)selanyl]benzene (41). Procedure 2. Eluent for the flash chromatography: cyclohexane/toluene 98/2; ¹H NMR (300 MHz, CDCl₃) δ = 7.66 (m, 2H), 6.91 (m, 2H), 3.83 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ = -37.18 (s, 3F), in accordance with literature.³⁵

1,3,5-Trimethyl-2-[(trifluoromethyl)selanyl]benzene (4m). Procedure 2. Eluent for the flash chromatography: pentane: 100; ¹H NMR (300 MHz, CDCl₃) δ = 7.05 (s, 2H), 2.60 (s, 6H), 2.34 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ = -35.16 (s, 3F), in accordance with literature.⁴⁸

1-[(Bromodifluoromethyl)selanyl]-2,4-dimethoxybenzene (5a). Procedure 1. Off white solid (mp <46 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: cyclohexane/toluene 9/1; ¹H NMR (400 MHz, CDCl₃) δ = 7.63 (m, 1H), 6.52–6.49 (massif, 2H), 3.86 (s, 3H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 163.8, 161.2, 140.5, 109.3 (t, ¹J(C,F) = 359 Hz), 106.9, 105.8, 99.2, 56.2, 55.6; ¹⁹F NMR (376 MHz, CDCl₃) δ = -18.20 (s, 2F). Anal. Calcd (%) for C₉H₉BrF₂O₂Se: C, 31.24; H, 2.62, Br 23.09; Se, 22.82. Found: C, 31.49; H, 2.92, Br 23.17; Se, 22.96.

4-[(Bromodifluoromethyl)selanyl]benzene-1,3-diol (**5b**). Procedure 1. Pale yellow solid (mp 116–118 °C, calibration substance: acetanilide 114.5 °C). Eluent for the flash chromatography: cyclohexane/EtOAc 8/2; ¹H NMR (400 MHz, CDCl₃) δ = 7.52 (d, *J* = 8.5 Hz, 1H), 6.58 (dd, *J* = 2.7, 0.5 Hz, 1H), 6.45 (ddd, *J* = 8.5, 2.7, 0.5 Hz, 1H), 6.27 (br s, 1H), 5.52 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 161.0, 158.8, 140.3, 109.7, 108.8 (t, ¹*J*(C,F) = 359 Hz), 104.4, 102.7; ¹⁹F NMR (376 MHz, CDCl₃) δ = -18.98 (s, 2F). Anal. Calcd (%) for C₇H₅BrF₂O₂Se: C, 26.44; H, 1.59, Br 25.13; Se, 24.83. Found: C, 26.53; H, 1.87, Br 25.39; Se, 24.97.

4-[(Bromodifluoromethyl)selanyl]naphthalen-1-ol (**5d**). Procedure 1. Brown solid (mp 95–97 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: cyclohexane/EtOAc 95/5; ¹H NMR (400 MHz, CDCl₃) δ = 8.46 (br d, *J* = 8.5 Hz, 1H), 8.26 (ddd, *J* = 8.2, 1.4, 0.7 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.65 (ddd, *J* = 8.5, 6.8, 1.4 Hz, 1H), 7.56 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 1H), 5.99 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 155.1, 139.5, 136.7, 128.4, 128.3, 126.1, 125.3, 122.4, 117.2, 109.4 (t, ¹*J*(C,F) = 359 Hz), 108.9; ¹⁹F NMR (376 MHz, CDCl₃) δ = -18.09 (s, 2F). Anal. Calcd (%) for C₁₁H₇BrF₂OSe: C, 37.53; H, 2.00, Br 22.70; Se, 22.43. Found: C, 37.28; H, 1.87, Br 22.82; Se, 22.73.

4-[(Bromodifluoromethyl)selanyl]-N,N-dimethylaniline (5e). Procedure 1. Yellow solid (mp 76–78 °C, calibration substance: azobenzol at 68.0 °C). After removing volatiles, pentane was added to the residue and the precipitate was filtered off and washed with pentane: ¹H NMR (400 MHz, CDCl₃) δ = 7.60 (d, J = 8.5 Hz, 2H), 6.74 (d, J = 8.5 Hz, 2H), 3.02 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ

= 151.7, 138.8, 112.6, 111.4, 109.9 (t, ${}^{1}J$ (C, F) = 357 Hz), 40.2; ${}^{19}F$ NMR (376 MHz, CDCl₃) δ = -19.35 (s, 2F). Anal. Calcd (%) for C₉H₁₀BrF₂NSe: C, 32.85; H, 3.06, Br 24.28, N 4.26; Se, 24.00. Found: C, 32.69; H, 3.11, Br 24.20, N 4.35; Se, 23.79.

3,4-Bis[(bromodifluoromethyl)selanyl]-2,5-dimethyl-1H-pyrrole (5g). To a flask equipped with a magnetic stirrer were added 1b (190 mg, 0.63 mmol, 2.2 equiv), sulfuryl chloride (51 µL, 0.63 mmol, 2.2 equiv), and dry THF (0.6 mL, 1 M). The reaction mixture was stirred at 23 °C for 15 min, and it was cooled to 0 °C. The pyrrole derivative 3g (29 μ L, 0.29 mmol, 1.0 equiv) was added, and the reaction was stirred at 0 °C for 35 min (the conversion was checked by ¹⁹F NMR with PhOCF₂ as internal standard). The reaction mixture was then partitioned between water and Et₂O, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated to dryness. The crude residue was purified by chromatography (pentane/Et₂O 80/20 to 70/30) to afford the desired product 5g as a pale yellow liquid (106 mg, 72% yield): ¹H NMR (400 MHz, CDCl₃) δ = 8.50 (br s, 1H), 2.45 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ = 136.1, 110.2 (t, ${}^{1}J(C,F) = 359$ Hz), 109.3, 13.5; ${}^{19}F$ NMR (376 MHz, CDCl₃) $\delta =$ -18.97 (s, 4F). Anal. Calcd (%) for C₈H₇Br₂F₄NSe₂: C, 18.81; H, 1.38, Br 31.28, N 2.74; Se, 30.91. Found: C, 19.05; H, 1.57, Br 31.33, N 2.59; Se, 30.98.

3-[(Bromodifluoromethyl)selanyl]-1H-indole (5h). Procedure 1. Brown solid (mp 49–51 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: cyclohexane/EtOAc 9/1 to 8/2; ¹H NMR (400 MHz, CDCl₃) δ = 8.54 (br s, 1H), 7.81 (m, 1H), 7.53 (d, *J* = 2.7 Hz, 1H), 7.44 (m, 1H), 7.34–7.27 (massif, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 136.1, 133.2, 130.0, 123.5, 121.7, 120.3, 111.6, 109.9 (t, ¹*J*(C,F) = 359 Hz), 98.0; ¹⁹F NMR (376 MHz, CDCl₃) δ = -18.92 (s, 2F). Anal. Calcd (%) for C₉H₆BrF₂NSe: C, 33.26; H, 1.86, Br 24.58, N 4.31 Se 24.29. Found: C, 33.18; H, 2.02, Br 24.90, N 4.49; Se, 24.21.

4-Bromo-3-[(bromodifluoromethyl)selanyl]-1H-indole (**5***i*). Procedure 1. Dark brown solid (mp 90–92 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: cyclohexane/EtOAc 8/2; ¹H NMR (400 MHz, CDCl₃) δ = 8.67 (br s, 1H), 7.60 (d, *J* = 2.8 Hz, 1H), 7.44–7.40 (massif, 2H), 7.11 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 137.0, 135.8, 126.7, 126.2, 124.2, 115.1, 111.3, 109.7 (t, ¹*J*(C,F) = 359 Hz), 98.0; ¹⁹F NMR (376 MHz, CDCl₃) δ = -20.24 (s, 2F). Anal. Calcd (%) for C₉H₅Br₂F₂NSe: C, 26.76; H, 1.25, Br 39.57, N 3.47 Se 19.55. Found: C, 26.52; H, 107, Br 39.83, N 3.24; Se, 19.87.

Methyl 3-[(Bromodifluoromethyl)selanyl]-1H-indole-5-carboxylate (5j). Procedure 1. Pale pink solid (mp 188–190 °C, calibration substance: salophen at 191.0 °C). After removing volatiles, pentane was added to the residue and the precipitate was filtered off and washed with pentane: ¹H NMR (400 MHz, CDCl₃) δ = 8.83 (br s, 1H), 8.51 (br s, 1H), 8.01 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.64 (d, *J* = 2.6 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 3.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 167.9, 138.8, 134.5, 129.8, 124.9, 124.0, 123.2, 111.5, 109.5 (t, ¹*J*(C,F) = 359 Hz), 99.5, 52.3; ¹⁹F NMR (376 MHz, CDCl₃) δ = -19.07 (s, 2F). Anal. Calcd (%) for C₁₁H₈BrF₂NO₂Se: C, 34.49; H, 2.11, Br 20.86, N 3.66 Se 20.61. Found: C, 34.37; H, 2.34, Br 21.05, N 3.75; Se, 20.85.

4-[(Pentafluoroethyl)selanyl]benzene-1,3-diol (**6b**). Procedure 1. White solid (mp 91–93 °C, calibration substance: benzil at 95.0 °C). Eluent for the flash chromatography: pentane/acetone 80/20; ¹H NMR (400 MHz, CDCl₃) δ = 7.49 (d, J = 8.5 Hz, 1H), 6.58 (d, J = 2.7 Hz, 1H), 6.44 (dd, J = 8.5, 2.7 Hz, 1H), 6.22 (br s, 1H), 5.42 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 160.7, 159.2, 140.8, 118.7 (qt, ¹J(C,F) = 286 Hz, ²J(C,F) = 34 Hz), 115.4 (tq, ¹J(C,F) = 305 Hz, ²J(C,F) = 42 Hz), 109.8, 102.7, 99.2 (t, ³J(C,F) = 3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -82.80 (t, ³J(F,F) = 3.8 Hz, 3F), -91.61 (q, ³J(F,F) = 3.8 Hz, 2F). Anal. Calcd (%) for C₈H₃F₅O₂Se: C, 31.29; H, 1.64; Se, 25.71. Found: C, 31.19; H, 1.77; Se, 26.03.

3-[(Pentafluoroethyl)selanyl]-1H-indole (**6**h). Procedure 1. Pale pink solid (mp 74–76 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: pentane/EtOAc 90/10; ¹H NMR (400 MHz, CDCl₃) δ = 8.51 (br s, 1H), 7.79 (m, 1H), 7.50 (d, J

= 2.7 Hz, 1H), 7.43 (m, 1H), 7.34–7.28 (massif, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 136.1, 133.6, 130.4, 123.4, 121.7, 120.2, 119.1 (qt, ¹J(C,F) = 286 Hz, ²J(C,F) = 35 Hz), 115.4 (tq, ¹J(C,F) = 304 Hz, ²J(C,F) = 41 Hz), 111.6, 92.1 (t, ³J(C,F) = 4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -82.75 (t, ³J(F,F) = 3.9 Hz, 3F), -92.62 (q, ³J(F,F) = 3.9 Hz, 2F). Anal. Calcd (%) for C₁₀H₆F₅NSe: C, 38.24; H, 1.93, N 4.46; Se, 25.14. Found: C, 38.13; H, 2.14, N 4.71; Se, 25.34.

4-[(Heptafluoropropyl)selanyl]benzene-1,3-diol (**7b**). Procedure 1. White solid (mp 71–73 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: pentane/acetone 80/20; ¹H NMR (400 MHz, CDCl₃) δ = 7.50 (d, *J* = 8.5 Hz, 1H), 6.58 (s, *J* = 2.7 Hz, 1H), 6.45 (dd, *J* = 8.5, 2.7 Hz, 1H), 6.23 (s, 1H), 5.51 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 160.8, 159.3, 141.0, 118.2 (tt, ¹*J*(C,F) = 306 Hz, ²*J*(C,F) = 40 Hz), 117.5 (qt, ¹*J*(C,F) = 289 Hz, ²*J*(C,F) = 35 Hz), 109.8, 108.8 (tsext, ¹*J*(C,F) = 263 Hz, ²*J*(C,F) = 38 Hz), 102.7, 99.1; ¹⁹F NMR (376 MHz, CDCl₃) δ = -79.85 (t, ⁴*J*(F,F) = 9.2 Hz, 3F), -87.57 (m, 2F), -122.28 (s, 2F). Anal. Calcd (%) for C₉H₅F₇O₂Se: C, 30.27; H, 1.41; Se, 22.11. Found: C, 30.50; H, 1.71; Se, 22.33.

3-[(Heptafluoropropyl)selanyl]-1H-indole (7h). Procedure 1. Redish solid (mp 46–48 °C, calibration substance: azobenzol at 68.0 °C). Eluent for the flash chromatography: pentane/EtOAc 90/10; ¹H NMR (400 MHz, CDCl₃) δ = 8.49 (br s, 1H), 7.82 (m, 1H), 7.48 (d, *J* = 2.7 Hz, 1H), 7.42 (m, 1H), 7.36–7.30 (massif, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 136.2, 133.8, 130.5, 123.4, 121.7, 120.2, 118.1 (tt, ¹*J*(C,F) = 305 Hz, ²*J*(C,F) = 38 Hz), 117.7 (qt, ¹*J*(C,F) = 289 Hz, ²*J*(C,F) = 35 Hz), 111.7, 109.0 (tsext, ¹*J*(C,F) = 263 Hz, ²*J*(C,F) = 38 Hz), 92.1 (t, ³*J*(C,F) = 4 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ = -79.87 (t, ⁴*J*(F,F) = 9.1 Hz, 3F), -88.46 (qt, ⁴*J*(F,F) = 9.1 Hz, ³*J*(F,F) = 3.4 Hz, 2F), -122.42 (br s, 2F). Anal. Calcd (%) for C₁₁H₆F₇NSe: C, 36.28; H, 1.66, N 3.85; Se, 21.69. Found: C, 36.14; H, 1.49, N 4.12; Se, 21.51.

Methyl 2-[(2,4-Dihydroxyphenyl)selanyl]-2,2-difluoroacetate (**8b**). Procedure 1. Yellow oil. Eluent for the flash chromatography: cyclohexane/EtOAc 8/2; ¹H NMR (400 MHz, CDCl₃) δ = 7.40 (d, J = 8.5 Hz, 1H), 6.53 (d, J = 2.6 Hz, 1H), 6.40 (dd, J = 8.5, 2.6 Hz, 1H), 6.45-6.35 (massif, 2H), 3.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 162.8 (t, ²J(C,F) = 30 Hz), 160.8, 158.8, 140.4, 115.9 (t, ¹J(C,F) = 304 Hz), 109.8, 102.6, 100.5 (t, ³J(C,F) = 3 Hz), 54.3; ¹⁹F NMR (376 MHz, CDCl₃) δ = -82.73 (s, 2F). Anal. Calcd (%) for C₉H₈F₂O₄Se: C, 36.38; H, 2.71; Se, 26.58. Found: C, 36.63; H, 2.89; Se, 26.48.

Methyl 2,2-Difluoro-2-(1H-indol-3-ylselanyl)acetate (8h). Procedure 1. Redish solid (mp 94–96 °C, calibration substance: benzil at 95.0 °C). Eluent for the flash chromatography: pentane/EtOAc 80/20 to 75/25; ¹H NMR (400 MHz, CDCl₃) δ = 8.67 (br s, 1H), 7.71 (m, 1H), 7.35–7.31 (massif, 2H), 7.27–7.23 (massif, 2H), 3.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 163.2 (t, ²*J*(C,F) = 30 Hz), 136.2, 133.4, 130.2, 123.2, 121.3, 119.8, 115.7 (t, ¹*J*(C,F) = 302 Hz), 111.8, 93.1 (t, ³*J*(C,F) = 3 Hz), 53.7; ¹⁹F NMR (376 MHz, CDCl₃) δ = -84.47 (s, 2F). Anal. Calcd (%) for C₁₁H₉F₂NO₂Se: C, 43.44; H, 2.98, N 4.61; Se, 25.96. Found C 43.60; H, 3.22, N 4.36; Se, 26.06.

4-{[(Benzenesulfonyl)difluoromethyl]selanyl}benzene-1,3-diol (9b). Procedure 1. Off white solid (mp 149–151 °C, calibration substance: acetanilide at 114.5 °C). After removing volatiles, pentane was added to the residue and the precipitate was filtered off and washed with pentane; ¹H NMR (400 MHz, CD₃OD) δ = 7.97 (m, 2H), 7.81 (m, 1H), 7.67 (m, 2H), 7.35 (d, *J* = 8.5 Hz, 1H), 6.39 (d, *J* = 2.6 Hz, 1H), 6.28 (dd, *J* = 8.5, 2.6 Hz, 1H); ¹³C NMR (101 MHz, CD₃OD) δ = 163.2, 162.0, 142.0, 136.8, 133.5, 131.9, 130.6, 126.4 (t, ¹*J*(C,F) = 340 Hz), 109.3, 103.6, 99.5 (t, ³*J*(C,F) = 2 Hz); ¹⁹F NMR (376 MHz, CD₃OD) δ = -75.51 (s, 2F). Anal. Calcd (%) for C₁₃H₁₀F₂O₄SSe: C, 41.17; H, 2.66, S 8.45 Se 20.82. Found: C, 41.27; H, 2.90, S 8.25; Se, 20.96.

3-{[(Benzenesulfonyl)difluoromethyl]selanyl}-1H-indole (9h). Procedure 1. Pale brown solid (mp 122–124 °C, calibration substance: acetanilide at 114.5 °C). After removing volatiles, pentane was added to the residue and the precipitate was filtered off and washed with pentane; ¹H NMR (400 MHz, CDCl₃) δ = 8.75 (br s, 1H), 7.95 (d, J = 7.7 Hz, 2H), 7.79 (m, 1H), 7.74 (t, J = 7.7 Hz, 1H), 7.57 (t, J = 7.7 Hz, 2H), 7.52 (m, 1H), 7.41 (m, 1H), 7.29–7.25 (massif, 2H); ¹³C NMR

(101 MHz, CDCl₃) δ = 136.1, 135.5, 134.2, 132.0, 130.8, 130.5, 129.4, 124.9 (t, ¹J(C,F) = 342 Hz), 123.2, 121.5, 120.2, 111.8, 92.3 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ = -78.03 (s, 2F). Anal. Calcd (%) for C₁₅H₁₁F₂NO₂SSe: C, 46.64; H, 2.87, N 3.63, S 8.30 Se 20.44. Found: C, 46.43; H, 2.74, N 3.71, S 8.14; Se, 20.27.

4-[(Difluoromethyl)selanyl]benzene-1,3-diol (10b). Procedure 3. Pale yellow oil. Eluent for the flash chromatography: pentane/EtOAc 75/25; ¹H NMR (400 MHz, CDCl₃) δ = 7.46 (d, *J* = 8.5 Hz, 1H), 6.95 (t, ²*J*(H,F) = 55.2 Hz, 1H), 6.57 (d, *J* = 2.6 Hz, 1H), 6.43 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.37 (br s, 1H), 5.75 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 159.9, 158.5, 140.0, 116.4 (t, ¹*J*(C,F) = 292 Hz), 109.6, 102.5, 100.5 (t, ³*J*(C,F) = 3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -90.05 (d, ²*J*(F,H) = 55.4 Hz). Anal. Calcd (%) for C₇H₆F₂O₂Se: C, 35.17; H, 2.53; Se, 33.03. Found: C, 34.94; H, 2.62; Se, 32.88.

3-[(Difluoromethyl)selanyl]-1H-indole (10h). Procedure 3. Pale yellow liquid. Eluent for the flash chromatography: pentane/EtOAc 90/10 to 85/15; ¹H NMR (400 MHz, CDCl₃) δ = 8.44 (br s, 1H), 7.79 (m, 1H), 7.44–7.41 (massif, 2H), 7.33–7.26 (massif, 2H), 7.00 (t, ²J(H,F) = 55.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 136.2, 132.2, 130.4, 123.3, 121.3, 120.2, 117.2 (t, ¹J(C,F) = 290 Hz), 111.6, 93.4 (t, ³J(C,F) = 4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -90.60 (d, ²J(F,H) = 54.9 Hz). Anal. Calcd (%) for C₉H₇F₂NSe: C, 43.92; H, 2.87, N 5.69; Se, 32.08. Found: C, 43.75; H, 3.12, N 5.74; Se, 32.28.

3-[(Difluorodeuteriomethyl)selanyl]-1H-indole ([D]10h). To a flask were added magnesium turnings (93 mg, 3.9 mmol, 10 equiv) and iodine (14.8 mg, 0.12 mmol, 30 mol), and it was heated up with a heat gun for 10 min under stirring. The flask was evacuated and refilled with nitrogen three times before adding a solution of 9h (150 mg, 0.38 mmol, 1 equiv) in CD₃OD (3.8 mL, 0.1 M). The mixture was stirred for 1.5 h at 23 °C, then a second portion of magnesium (187 mg, 7.8 mmol, 20 equiv) was added and the reaction was stirred for a further 2 h. The conversion was checked by ¹⁹F NMR with PhOCF₃ as internal standard. A saturated aqueous solution of NH₄Cl (10 mL) was added, and the reaction mixture was extracted with Et_2O (15 mL \times 3). The combined organic layers were washed with water and brine, dried over MgSO₄, filtered, and concentrated to dryness. The crude residue was purified by chromatography (pentane/Et₂O 85/15 to 75/25) to afford the desired product [D]10h as a yellow oil (55 mg, 58% yield): ¹H NMR (400 MHz CDCl₃) δ = 8.43 (br s, 1H), 7.79 (m, 1H), 7.44– 7.41 (massif, 2H), 7.33–7.26 (massif, 2H); $^{13}\mathrm{C}$ NMR (101 MHz, $CDCl_3$) $\delta = 136.2, 132.2, 130.4, 123.3, 121.3, 120.2, 116.9$ (tt, ¹*J*(C,F) = 289 Hz, ${}^{1}J(C,D)$ = 32 Hz), 111.6, 93.3 (t, ${}^{3}J(C,F)$ = 4 Hz); ${}^{19}F$ NMR (376 MHz, CDCl₃) $\delta = -91.33$ (t, ²*J*(F,D) = 8.5 Hz, 2F). Anal. Calcd (%) for C₉H₆DF₂NSe: C, 43.74; H, 3.26, N 5.67; Se, 31.95. Found: C, 43.54; H, 2.98, N 5.80; Se, 32.06.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01344.

Copies of NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: thierry.billard@univ-lyon1.fr.

Author Contributions

[†]Q.G. and E.I. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the CNRS, the RADIOMI project (EU FP7-PEOPLE-2012-ITN-RADIOMI), the French Ministry of Research and the French Fluorine Network.

The Journal of Organic Chemistry

REFERENCES

(1) Smart, B. E. J. Fluorine Chem. 2001, 109, 3.

(2) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, Germany, 2013.

(3) Hird, M. Chem. Soc. Rev. 2007, 36, 2070.

(4) Pagliaro, M.; Ciriminna, R. J. Mater. Chem. 2005, 15, 4981.

(5) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. *Chem. Rev.* **2014**, *114*, 2432.

- (6) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
- (7) Becker, A. Inventory of Industrial Fluoro-biochemicals; Eyrolles: Paris, 1996.
- (8) Theodoridis, G. In *Advances in Fluorine Science*; Tressaud, A., Ed.; Elsevier: Amsterdam, 2006; Vol. 2, p 121.
- (9) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16.
- (10) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. *J. Med. Chem.* **2015**, *58*, 8315.
- (11) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. *Chem. Rev.* **2016**, *116*, 422.
- (12) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2415.
- (13) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.

(14) Rayman, M. P. Lancet 2000, 356, 233.

- (15) Schwarz, K.; Foltz, C. M. J. Am. Chem. Soc. 1957, 79, 3292.
- (16) Bodnar, M.; Konieczka, P.; Namiesnik, J. J. Environ. Sci. Health,
- Part C: Environ. Carcinog. Ecotoxicol. Rev. 2012, 30, 225.
- (17) Brown, K. M.; Arthur, J. R. Public Health Nutr. 2001, 4, 593.
 (18) Holben, D. H.; Smith, A. M. J. Am. Diet. Assoc. 1999, 99, 836.
- (13) Holben, D. H., Shindi, A. W. J. Am. Diet. Assoc. 1999, 99, 850.
 (19) Kyriakopoulos, A.; Behne, D. Rev. Physiol. Biochem. Pharmacol.
 2002, 145, 1.
- (20) Lu, J.; Holmgren, A. J. Biol. Chem. 2009, 284, 723.
- (21) Wessjohann, L. A.; Schneider, A.; Abbas, M.; Brandt, W. Biol. Chem. 2007, 388, 997.
- (22) Abdulah, R.; Miyazaki, K.; Nakazawa, M.; Koyama, H. J. Trace Elem. Med. Biol. 2005, 19, 141.
- (23) Combs, G. F.; Gray, W. P. Pharmacol. Ther. 1998, 79, 179.
- (24) Ferri, T.; Favero, G.; Frasconi, M. Microchem. J. 2007, 85, 222.
- (25) Hartikainen, H. J. Trace Elem. Med. Biol. 2005, 18, 309.
- (26) Sanz Alaejos, M.; Diaz Romero, F. J.; Diaz Romero, C. Nutrition **2000**, *16*, 376.
- (27) Romashov, L. V.; Ananikov, V. P. Chem. Eur. J. 2013, 19, 17640.
- (28) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
- (29) Billard, T.; Langlois, B. R. Tetrahedron Lett. 1996, 37, 6865.
- (30) Billard, T.; Large, S.; Langlois, B. R. *Tetrahedron Lett.* **1997**, *38*, 65.
- (31) Large, S.; Roques, N.; Langlois, B. R. J. Org. Chem. 2000, 65, 8848.
- (32) Blond, G.; Billard, T.; Langlois, B. R. *Tetrahedron Lett.* **2001**, *42*, 2473.
- (33) Cherkupally, P.; Beier, P. Tetrahedron Lett. 2010, 51, 252.
- (34) Potash, S.; Rozen, S. J. Org. Chem. 2014, 79, 11205.
- (35) Nikolaienko, P.; Rueping, M. Chem. Eur. J. 2016, 22, 2620.
- (36) Billard, T.; Langlois, B. R.; Large, S. Phosphorus, Sulfur Silicon Relat. Elem. 1998, 136, 521.
- (37) Billard, T.; Roques, N.; Langlois, B. R. J. Org. Chem. 1999, 64, 3813.
- (38) Magnier, E.; Vit, E.; Wakselman, C. Synlett 2001, 1260.
- (39) Pooput, C.; Medebielle, M.; Dolbier, W. R. Org. Lett. 2004, 6, 301.
- (40) Pooput, C.; Dolbier, W. R.; Médebielle, M. J. Org. Chem. 2006, 71, 3564.
- (41) Ma, J.-J.; Yi, W.-B.; Lu, G.-P.; Cai, C. Catal. Sci. Technol. 2016, 6, 417.
- (42) Rong, M.; Huang, R.; You, Y.; Weng, Z. Tetrahedron 2014, 70, 8872.
- (43) Zhu, P.; He, X.; Chen, X.; You, Y.; Yuan, Y.; Weng, Z. Tetrahedron 2014, 70, 672.
- (44) Hou, C.; Lin, X.; Huang, Y.; Chen, Z.; Weng, Z. Synthesis 2015, 47, 969.

- (45) Wu, C.; Huang, Y.; Chen, Z.; Weng, Z. Tetrahedron Lett. 2015, 56, 3838.
- (46) Kondratenko, N. V.; Kolomeytsev, A. A.; Popov, V. I.; Yagupolskii, L. M. Synthesis **1985**, 667.
- (47) Chen, C.; Hou, C.; Wang, Y.; Hor, T. S. A.; Weng, Z. Org. Lett. 2014, 16, 524.
- (48) Chen, C.; Ouyang, L.; Lin, Q.; Liu, Y.; Hou, C.; Yuan, Y.; Weng, Z. Chem. Eur. J. 2014, 20, 657.
- (49) Aufiero, M.; Sperger, T.; Tsang, A. S. K.; Schoenebeck, F. Angew. Chem., Int. Ed. 2015, 54, 10322.
- (50) Tian, Q.; Weng, Z. Chin. J. Chem. 2016, 34, 505.
- (51) Lefebvre, Q.; Pluta, R.; Rueping, M. Chem. Commun. 2015, 51, 4394.
- (52) Wang, Y.; You, Y.; Weng, Z. Org. Chem. Front. 2015, 2, 574.
- (53) Matheis, C.; Wagner, V.; Goossen, L. J. Chem. Eur. J. 2016, 22, 79.
- (54) Dale, J. W.; Emeleus, H. J.; Haszeldine, R. N. J. Chem. Soc. 1958, 2939.
- (55) Yarovenko, N. N.; Shemanina, V. N.; Gazieva, G. B. Russ. J. Gen. Chem. 1959, 29, 924.
- (56) Stump, E. C. Chem. Eng. News 1967, 45, 44.
- (57) Haas, A.; Praas, H.-W. Chem. Ber. 1992, 125, 571.
- (58) Yagupol'skii, L. M.; Voloshchuk, V. G. Russ. J. Gen. Chem. 1966, 36, 173.
- (59) Voloshchuk, V. G.; Yagupol'skii, L. M.; Syrova, G. P.; Bystrov, V. P. *Russ. J. Gen. Chem.* **196**7, *37*, 105.
- (60) Yagupol'skii, L. M.; Voloshchuk, V. G. Russ. J. Gen. Chem. 1967, 37, 1463.
- (61) Yagupol'skii, L. M.; Voloshchuk, V. G. Russ. J. Gen. Chem. 1968, 38, 2426.
- (62) Magnier, E.; Wakselman, C. Collect. Czech. Chem. Commun. 2002, 67, 1262.
- (63) Masilamani, D.; Rogic, M. M. J. Org. Chem. 1981, 46, 4486.
- (64) Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; Wiley-VCH: Weinheim, Germany, 2011.
- (65) Marcus, Y. The Properties of Solvents; Wiley: Chichester, UK, 1998.
- (66) Marsden, C. J. J. Fluorine Chem. 1975, 5, 401.
- (67) Trost, B. M. Bull. Chem. Soc. Jpn. 1988, 61, 107.
- (68) Ismalaj, E.; Le Bars, D.; Billard, T. Angew. Chem., Int. Ed. 2016, 55, 4790.
- (69) Gant, T. G. J. Med. Chem. 2014, 57, 3595.
- (70) Mullard, A. Nat. Rev. Drug Discovery 2016, 15, 219.
- (71) Thomae, D.; Morley, T. J.; Lee, H. S.; Barret, O.; Constantinescu, C.; Papin, C.; Baldwin, R. M.; Tamagnan, G. D.;
- Alagille, D. J. Labelled Compd. Radiopharm. 2016, 59, 205.
- (72) Hu, M.; Wang, F.; Zhao, Y.; He, Z.; Zhang, W.; Hu, J. J. Fluorine Chem. 2012, 135, 45.
- (73) Suzuki, H.; Usuki, M.; Hanafusa, T. Synthesis 1979, 705.